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Role of synaptic delay in organizing the behavior of networks of self-inhibiting neurons
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We consider a pair of mutually coupled inhibitory neurons in which each neuron is also self-inhibitory. We
show that the size of the synaptic delay determines the existence and stability of solutions. For small delays,
there is no synchronous solution, but a stable antiphase and a stable on-state solution. For long delays, only the
synchronous solution is stable. For intermediate delays, either the antiphase or synchronous solutions are
stable. In contrast to prior work, for stability of synchrony, we only require the existence of a single slow
process.
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[. INTRODUCTION also sufficiently long; there is no requirement on the exis-
tence of a second slow current. We show that the size of the
Networks of inhibitory neurons exist in various parts of Synaptic delay determines the existence and stability of so-
the central nervous system. Efforts to determine the funclutions. For small delays, there is no synchronous solution,
tional role of these networks have been complicated by th@ut @ stable antiphase and a stable on-state solution. For

complex architecture of and the diversity of synaptic inter-/2/9€r delays, the antiphase and synchronous solutions are

actions within these heterogeneous networks. For this reasoﬁtable' Finally, for very large delays, only the synchronous

s . . . - _solution is stable.
studies of reduced, if somewhat idealized, models are of im= Our paper shows how bistability can be achieved for a

\?vc:)rrtka ni%?elgctzzgtn;hezo?mg;gfnmlzlgri]rtw:?t:ﬁc:rhe r'\”;g:’(::]asmhgi:robust set of parameters. The results suggest ways in which
A o mpe, y . the network can transition between various rhythmic states.
been implicated in synchronizing cells at thdrequency in

. . . We also provide insight into neural mechanisms that modu-
the hippocampal and neocortical systejip The dynamics |4t characteristics of the solutions such as the basin of at-

of inhibitory reticularis cells determine whether the thalamusyaction of solutions.
displays spindle or delta sleep rhythfi2s3]. The behavior of The paper is organized as follows. In Sec. Il, we state our
interneuron networks has also been suggested to govern thgodeling equations and assumptions. Here we discuss how
phase precession phenomenon of hippocampal place cells use geometric singular perturbation theory to analyze our
[4]. model. In Sec. lll, we discuss the existence and stability of
Prior studies of mutually coupled inhibitory networks solutions as a function of the synaptic delay. In Sec. IV, we
have reported that there are two necessary conditions fahow how the solutions depend on other parameters of the
stability of the synchronous solution: one is a delay to theequations. We also discuss the robustness of the synchronous
onset of inhibition, the other is the existence of an intrinsicsolution to synaptic and intrinsic heterogeneities. Numerical
slow current that determines the length of the neuron’s resimulations are provided. Section V is a discussion.
fractory state and a second slow currg®6,2,7,8. The re-

quired second slow current can be synaptic such as a Il. MODEL
GABA-B mediated inhibition, or can be intrinsic to the cell ~We use biophysical conductance based equations to
such as a sag curreft]. model the cells and the synapses between them. These equa-

Self-inhibition has been suggested as a possible mecha-
nism for organizing the behavior of taste receptor cells *
[9,10], of transient cells involved in visual processing in the @1__.@ — &
locust medullg[11] and in the cortical collecting tubule of
rats[12]. At a system level, self-inhibition can also arise as a
reduction of a more complicated architecture. For example,
LG neurons are known to presynaptically inhibit excitatory

input to them fromM CNL1 cells in the lobster stomatogastric » G e
ganglion[13]. Presynaptic inhibition is equivalent to self- —
inhibition. See Fig. 1. l

In this paper, we show that two mutually coupled, self- e e

inhibitory neurons can produce stable synchronous oscilla-
tions provided only that the onset of inhibition is delayed for  F|G. 1. (a) Equivalence of an excitatory-inhibitory pair with
sufficiently long and that the refractory state of the neuron igyresynaptic inhibition to a single cell with self-inhibitiorib)
Equivalence of a network of mutually coupled cells with presynap-
tic inhibition to a two cell network with mutual and self-inhibition.
*Email address: bose@m.njit.edu Dots denote inhibition and bars denote excitation.
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RKp= (VRKO, WRKO)

FIG. 2. The nullclines for an isolated inhibi-
tory neuron without self-coupling.

LKg= (VLKO , wLKo )

C,

Vih

tions can be written compactly in a general form in which theassume thasS intersectsC, on the right branch o, near
exact details of the equations are less important than thrk, at a pointpo= (v, W, ). See Fig. 2.
0 0

geometric shape of the nullclines of the equations. The equa- ~q|is communicat

4 : o . . e at synapses, whereby the “transmit-
tions for an isolated inhibitory cell without self-coupling are ting” ynap y

or presynaptic cell sends a synaptic current causing

do either an increase or decrease in the voltage of the “receiv-
e—="f(v,w), ing” or postsynaptic cell. The synaptic currents are modeled
dt by adding a term to the right-hand side of #hfeequation for

2.1 each cell. There are two types of inhibition in our model: self
and mutual, both of which act with a delay of time The
equations for the two coupled cells with mutual and self-
inhibition are fori=1,2i#].

where e<1 is the singular perturbation parameter. Tihe

W
a:[ww(v)_w]/Tco(UL

nullcline is the curveCy={(v,w):f(v,w)=0} and is cubic dv;
in shape. We IeLKOE(vLKO,WLKO) denote the local minima EHZf(Ui Wi) = GsyrSi(t— 7)[v; = Egynl
(also called the left kneeof Cy and letRKo=(vrk,,Wrk,)
denote the local maximéaight knee of C,. Thew nullcline ~ OsyrSj(t—7)[vi — Egynl,
is the curveS={(v,w):w,,—w=0} and is a nondecreasing
sigmoid. We take dw,
’ e =W () ~ W), (2.4
0 v<v, 93
Woc(v)_ 1 U>Ub ( . )

ds
_ _ eqp ~ell-siH@i—vm) = BsiH(vn—vi),
for SOMev |k <Va<URK,<Up- The functiond andg satisfy

the following requirementsf >0 (f<0) below (above C,,

andg>0 (g<0) below (above S. The nonlinearityf con- EE
tains various ionic currents that are intrinsic to the cell. The dt
nonlinearity w,,—w controls the opening and closing of a

potassium channel associated with the cell. See the Appendikhei terms represent self-inhibition, while théerms repre-

:a[l_Sj]H(Uj_Uth)_,BSjH(Uth_vj)'

for equations. sent mutual inhibitiongs,, is the maximal synaptic conduc-
The function..(v) is given by tance.Es,, is the synaptic resting potential. Since the syn-
apses are inhibitory, the reversal potential is less than the
L v=um 23 cells’ voltagesp; —Esyn>0. s; ands; are the synaptic input
7o(V)= TR V=V, 23 functions.H is the Heaviside function ang, is the synaptic

threshold.« is the synaptic rise ang is the synaptic decay
wherevy, is a predetermined activity threshold located be-rate constant. We assume thatand 8 are bothO(1) with
tween the knees df,. The time constants, and 7z of the  respect toe. Thus the inhibition turns on and off fast like a
silent and active states are bafl{1) with respect tce. We  GABA-A mediated inhibition. Therefore only the variahig
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FIG. 3. Trajectories of an isolated inhibitory
neuron. The trajectory for the neuron without
self-coupling consists of the solid curve connect-
ing LK, to (URjumerLKo) and the solid curve
connecting (;Rjump,wLKO) to po- The dashed
portion of the figure represents the changes made
to the trajectory of the neuron when a hyperpo-
larizing current is injected when the cell is at the
point (U'hyp‘wlh . Two arrows denote fast jumps
which are solutions of Eq(2.6), and one arrow
denotes slow flows, which are solutions of Eq.

(2.9.

evolves slowly in Eq(2.4) corresponding to the single slow the opposite branch using E@.6). In Eq. (2.6), w acts like
process, which determines the refractory time of the cells. a parameter. The fast system now reduces to a one-

A. Singular solutions

We use geometric singular perturbation theory to con- d_ng(U’W)’
struct solutions of Eq(2.4). This involves using the small-
ness of the parameterto define reduced fast and slow equa-

dimensional equation
(2.7

wherew is constant. Asv varies, the critical points of this

tions. Solutions to these equ_ations are pieced togeth_er t@quation trace out the cubic nullclint.
form a so-called singular solution. For the types of equations "1,o singular orbit of interest is one that leads to the neu-

with which we deal, the existence and stability of the singu-
lar solution is sufficient to imply existence and stability of

the actual solution to Eq2.4) for e sufficiently small[14].

It is instructive to first construct the singular solution for a

single neuron, without self-coupling. Setting=0 in Eq.
(2.1), we obtain the slow equations

0=f(v,w),
(2.9

dw
a=[ww(v)—w]/7'w(v).

The fast equations are obtained by lettégt/e in Eq. (2.1)
and then setting=0

dv
—=f(v,w),

dé
(2.6
dw

T

Equation(2.5) defines a one-dimensional system where the
cell is constrained to move on the culdlg Its rate of move-
ment is governed by the second equation of ). When
the cell reaches eithdrK, or RKj, it makes a fast jump to

ron becoming trapped in a so-called on-state. Suppose at
=0, the cell starts in the silent state laKy on Cy. Then
under Eq.(2.6), the cell will jump to the active state to the
right branch ofC, instantaneously with respect to the slow
time t. The cell then travels up the right branch@f under
Eq. (2.5. The stable fixed poinpy will then attract the cell
causing it to become trapped at this high-voltage fixed point.
We interpret this solution to represent tonic firing of spikes
of a bursting neuron.

The isolated cell can be made to oscillate by adding an
appropriate hyperpolarizing current. The effect of such a cur-
rent is to lower the cubicy in the phase plane; see Fig. 3.
Thus if the cell is in a neighborhood qf, and negative
current is injected, the cell will jump back to the left branch
of Co. Thus for a cell to jump between active and silent
states, it must either reach the knee of a cubic, or receive an
appropriately timed dose of inhibition. Notice that a cell with
self-inhibition can oscillate if there is a sufficiently long de-
lay to the onset of inhibition.

We now consider the coupled system of reduced fast and
slow equations. The fast equations are obtained from Eqg.
(2.4) by substitutingé=t/e and then setting to 0.

dUi _
d_f_f(vi :Wi)_gsynsi(_ 7')[Ui_Esyn]

_gsynsj(_ 7)[vi— Esyn]a
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dWi _
@ O
ds;
d—§:a[l_Si]H(Ui_Uth)_BsiH(Uth_Ui)1 (28)
dS]'
d—g=a[l—sj]H(Uj_Uth)_BSjH(vth_vj)'

The slow equations are obtained directly from E214) by
settinge=0.

0="f(v;,Wj) = dsyrSi(t—7)[v; = Esynl
_gsynsj(t_ m)[vi— Esyn]v

dWi
—=[Ww(Ui)_Wi]/T°°(Ui)’

at (2.9

O0=a[1-s]H(vi—v) = BsiH(vm—vi),
O:a[l_Sj]H(vj—Uth)—BSjH(Uth_Uj).

As with Eq.(2.7), thev; equation of Eq(2.8) can be repre-
sented as

dl)i ~
—_= F(Ui W, §; ,Sj)

it (2.10

for a constantv. Notice this equation depends on the values -
n-give a precise statement of the results, we shall make a few

of s; ands;. As a result, there are two new cubics to co
sider. They are  C={(v,w,s;,s;):F(v,w,1,0)
=0 orF(v,w,0,1)=0} and C,={(v,w,s;,s;):F(v,w,1,1)

=0}. The cubicC; corresponds to the lowered cubic which

results from either the self- or mutual inhibition adgl rep-

FIG. 4. The three cubic nullclines correspond-
ing to different levels of inhibition.

by gsyn. We shall refer to the left and right knees of these
cubics byLK; andRK;, for i=1,2. The intersection of the
right branches of the lowered cubics with the sigm8ide-
fines two new fixed pointp; andp,. We assume tha\lvp2

<Wgr. <W, <Wgk <W, . We also assume th&tintersects
RK2 Py RK1 Po

C, along its left branch at a poimiz; see Fig. 4. Also, since
w,,=0 near the left branches of these cubics, the rates of
evolution on the left branches is independent of which cubic
a cell may lie on. This is not the case for the right branches.

B. Main result

We shall establish the existence and stability of three dif-
ferent types of solutions. The first is the on-state solution,
where both cells are trapped at a high-voltage fixed point.
The second is a synchronous periodic orbit. The third is an
antiphase solution in which when one cell jumps to the ac-
tive phase, the other cell jumps down to the silent phase after
a delay ofr. We shall always work in the=0 singular limit
since results of Ref.14] imply that the singular solutions of
interest perturb to yield actual solutions for the falsmall
problem.

Our goal is to study this problem with all parameters fixed
and to see how the existence and stability of solutions de-
pends on the delay. To this end, we will show that for a
fixed 7, at most two of the above-mentioned solutions can be
stable. We will provide conditions on the basin of attraction
of each of these solutions. Depending on the value of the
parameters, the model that we consider can display incred-
ibly complicated and diverse dynamical behavior. Thus to
assumptions. Later, we will show how some of the results
are affected by changing assumptions.

Let 7, be the time it takes a cell to travel on the right
branch ofC, from Wik, 10 Wrk,, andT, be the time on the

resents the lowered cubic that results from both of these inleft branch ofC, between these two points; see Fig. 5. ket
hibitions. The amount that these cubics are lowered is depere the time on the right branch 6§ from w; ¢ to wg,. Let
dent mostly on the strength of the inhibition and is governedr® be the time it takes a cell to travel on the right branch of
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I\
' .....
R \\\ szg RKZI FIG. 5. Time lengths of evolu-

tion between relevant points on

T 17 T* various cubic nullclines. For clar-

1 T * ity, the times have been projected
(to the right and left onto simpli-

LKy LK fied versions of the branches of

TLILK1 \\'/ / \\\ ILKl 1 the nullclines.

a2
P

Ed

Left ’ e ¢
Branches g;gﬁzhes
C; from w10 Wy, T, the time on the right branch af, (i) if 7<7,, there exists both a stable on-state and a

stable antiphase solution.

(i) if 7,<7<r, there exists both a stable synchronous
and a stable antiphase solution.

(i) if 7<7, then there exists only a stable synchronous

fromwy o Wg,, 7 be the time it takes to travel on the left
branch ofC, from Wp, OW i, andT" be the time it takes to
travel on the left branch af; from Wik, oWk, We make

the following two assumptions: orbit.
. R~ =L Each of the stable solutions has a corresponding basin of
(AL 7" <T,<T, (A2)TR<7<T". attraction, which we shall identify in the analysis below; Fig.

The crux of these assumptions is that evolution in the silen? shows the bifurcation diagram.

state of the neuron is slower than in the active state. To state
the main theorem, we shall restrict the set of initial condi- . EXISTENCE AND STABILITY OF SOLUTIONS

tions to the interva{lo}]. This is sufficient since a given cell

must jump down from the active state withwavalue that is Establishing existence and stability of the on-state and

synchronous solution is straight forward. Doing the same for

less than/vpo. the antiphase solution is a bit more involved. For the on-state
Theorem 1 and synchronous solution, we prove stability by directly
o showing that cells that start nearby to either of these solu-
If Atoe[0,7], then there exists e (7*,7) such that tions approach them as time evolves. For the antiphase solu-
— A ---------------------------------------------------------
Aty= 1
I
0“
R FIG. 6. The bifurcation dia-
Rt gram relating the delay to the ba-
Anti-phase Synchronous sin of attraction of each type of
Initial sejueiens Solutions solution. At most two solutions
Time R can be stable for the same delay.
Between F Rt The curvedl’;, i=0, ...,3sepa-
Neurons ?' i rate different solution regimes.
’ The diagonalT', consists of a
: solid and a dashed portion. The
1" F dashed portion separates initial
0 1 conditions that approach the an-
On—State tiphase solution in different ways.
Selutions :
T, T

Synaptic Delay
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S
cq (T+At,) — el
ey (T+AL ) i
FIG. 7. The path of two cells
ey (2THAE ) in the phase plane as they ap-
ep (2THAL ) proach synchrony, for intermedi-

ate delays. The notatiogy(t) de-
notes the position of cellat time
t. Aty denotes the initial time dis-
tance between cells at&0.

cy (Ato)

¢4y (0)
ey (Ato)

C
v cC1°

tion, stability is established by showing that the solution is B. The synchronous solution for intermediate delays
obtained as a fixed point of a relevant contraction mapping. \ye continue by discussing the existence of the synchro-

nous solution. Suppose both cells starl_#t, jump to the
right branch ofC,. There, they travel up that branch until
inhibition turns on, after timer. For the synchronous solu-

We first discuss the existence of the on-state solutiontion to exist, it is necessary far=r, . In other words, both
Suppose both neurons startd€, andr<7, . Att=0, both  cells need to travel up the the right branchCgfaboveRK,
cells jump to the active state. Due to the delay, the inhibitiorpefore the self- and mutual inhibition is felt. At 7, the
will not be felt for 7 time, so both cells jump to the right cells can then jump to the left branch 65. At t=2r, the
branch ofC, and travel up. After timer, both the self- and  cells return to the left branch @, and the process repeats.
mutual inhibition turn on. Sincer<rt, , wy(7)=wx(7) Next, we discuss the stability of the synchronous solution.
<Wgy, and are thus not above the right kneeCofwhen the  Suppose first that< 7*. We startc, atLK, andc, at some
inhibition is felt. As a result, both will jump to the right time distance\t,, abovec, on the left branch of, such that
branch ofC, and become trapped gb. Aty<r7. At t=0, ¢, jumps to the right branch af,. After

To prove the stability, we start with the cells a fixed dis- time Atg, ¢, will jump to the right branch of,.
tance apart such thatt,<r. At t=0, ¢, jumps to the right Now both cells travel up the right branch 6§. As they
branch ofC,. Sincer<r, , W1(T)<WRK2- SinceAty<T, C, get closer tqg, the neurons move closer together in Euclid-

reached. Ky and jumps before the inbiton due e s S8 BEIER, N CoREER L e same
on. When the inhibition due to; activates, both cells jump part.

back to the right branch at,. The inhibition due tcc, wil differential equations and have followed the same trajectory.

ft thet. ti If ALY < h After time 7, the inhibition due ta, crossing the synaptic
come after anothedty time. If wy(7+Ato) <Wrk,, then  yprachoid, will turn on. Since<r*, both cells jump left to

both cells will become trapped by,. If wi(7+Aty)  the right branch ofC;. For the nextAt, time, both cells
>Wgg, andw,(7+Atg) <Wg,, the cells will approach an travel towardp, as Euclidean compression continues to oc-
antiphase solution; and i/,( 7+ Ato) >Wgy, the cells will  cur. When the second inhibition turns on, sinee r, , if

approach a synchronous solution. Both of these solutions ardlo 1S sufficiently small, then both cells jump to the left
discussed below. The curved labelBgin Fig. 6 represents branch ofC,, see Fig. 7. It is of fundamental importance that

the case whemy( -+ Aty) =Wgy.. This curve is one bound- the ceIIs.jump down to the ngnt state at the same time be-
2 cause this causes a compression in time between cells due to

ary between the antiphase and on-state solution regions. Thgst threshold modulatiofiL5]. This occurs because the ver-
curvel’; represents the case whep(7+ Atg) =Wgk,- This  tical speed on the right branch 6f at the jump down point
curve is one boundary between the antiphase and synchre less than the vertical speed at the jump on point on the left
nous solution regions. branch ofC,. Since the cells remain the same Euclidean dis-

A. The on-state solution for short delays
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tance apart before and after the jump, but the speed increastt®e onset of the next inhibition, the overlapping inhibitions
after the jump, the time distance between the cells must dewill causec; to jump onto the left branch af,, andc, will
crease. Let the new time distance be denoted\by<At,.  jump onto the right branch af,. From therec, will travel
Note that after the jumpg, is now the leading cell, being up towardsp,, while ¢, will travel down towardd. K. After
below ¢, on the left branch of,. time 7, ¢,’s inhibition turns off, and by assumptiqAl), ¢,
Both cells now travel down the left branch 6. = time  jumps onto the left branch d@f;, andc, jumps onto the right
after the cells have jumped down, inhibition turns off for branch ofC,. Now, c, travels down until it reachelsK, and
both cells, since they jumped down simultaneously. Since c, travels up towardg,. This case corresponds to the region
<7*, by assumptior(Al), the cells then return to the left of Fig. 6, which is bounded by the curvég, I'y, andl’,.
branch ofCy abovelLK,. In both scenarios above, the cells eventually evolve to the
There is no time compression expansion as the cells jumfollowing configuration. One cell is dtK; (without loss of
between the left branches 65 and(C, since the rate on the generality, call this celt,). Another cell is located on the
left branches is independent of cubic. Thus wleemeaches right branch ofC; (without loss of generality call this cell
LK, the time between cells iAt;, which is less than the c¢,). We now take this to be the setuptatO.
original time apart. Thus the cells approach synchrony. Let B be a set of initialw positions ofc, on the right
The rate at which they synchronize is most strongly gov-branch ofC,, defined as follows. The s& will include all
erned by the amount of time compression across the dowpoints fromwpl down to the point that is time belowRK,.
jump. This amount is controlled by the rglative speeds N et thew-value of this point be denoted hy. Therefore, the
each branch and the total amount of Euclidean compression ~
the cells undergo in a neighborhood of the fixed pojpgs  S€tB=(W:Wp,).
andp;. We note that the existence of the fixed points is not At t=0, ¢, jumps to the right branch @f; andc, moves
necessary for the stability of the intermediate delay synchrotip that branch towards, . After 7 time, inhibition due tcc,
nous solution. There would still be Euclidean compressiorfurns on. Sincer<r* and T,<TFR, by assumptiofAl), ¢
without the fixed points, but it would not be as strong. Thushas not risen abovRKj, and so it jumps to the right branch
the fixed points increase the rate at which the cells synchroof C,. ¢, jumps to the left branch af, because after time,
nize. Later we show that they are important for the longit has definitely risen abovRK, and is able to jump left.

delay synchrony. After another timer, the inhibition due ta, turns off, since
In Sec. Il D, we will discuss the existence and stability of it crossed the synaptic threshold while jumping to the left.
the synchronous solution far>7*. By Eg. (A1), c; now jumps to the right branch @ while c,

jumps to the left branch af;. Let T, be the time it takes to

C. The antiphase solution for short and intermediate delays ~ Move fromc,’s current position down th.K,; see Fig. 8.
To prove existence of the antiphase solution, we show
at there exists a mapping of the &einto itself. Whenever
I?;\ cell reaches. K4, the map will record the position of the
Bther cell on the right branch af;.

When a cell is on the left branch of any cubig, (v)
=0. Therefore, the rate off evolution is governed by

We next show that a stable antiphase solution exists. Ws,
define an antiphase solution as being an oscillation in whic
when one cell becomes active, the other cell becomes ina
tive after a delay ofr.

As usual, letc; start atL K, andc, start on the left branch
of Cp, such that they ardt, apart in time. There are two
ways that the cells will approach an antiphase solution: dw w

(1) If 7<At,, thenc, does not reach.K, before the FTE (3.1
inhibition due toc, is felt and will jump back to the left -
branch ofC; att=r7. By assumption(A2), c, rises above
RK, before ¢, reachesLK;. Assume thatr<7* so that
wl(r)<WRK1. So when the first inhibition is feltc; will

jump left onto the right branch af,, aboveRK, but below
RK; and become trapped lp4. In the meantimeg, travels
down the left branch of, until it reached_K,, and jumps to

the right branch of’;. After time 7, the inhibition due t;  \hich is the time it takes to travel from some initial height
causesc, to jump down to the left branch af, andcy 10 L g the left branch of a cubic down to a heightvaf

jump back to the right branch of this cubic. After another ~ g, the right branch of a cubic, the situation is more deli-
time 7 by assumptioriAl), ¢, jumps to the left branch &y o540 1t is possible that a cell is below the part of the sigmoid
andc; jumps to the right branch of this cubic. The culVg ¢ is not constant with respect g i.e. the sloping part of

in Fig. 6 is the diagonaht,= 7. Therefore initial conditions 4 sigmoid. In this case, we must consider the vudiffer-

that fall into this case lie above the curfg. _ ential equation, or at least a good approximation of it.
(2) If 7> Atg, thenc, is able to reacth. Ky and jump right, Forv e (vy,0p), let

before the inhibition due t@; is felt. At t=r, both cells
jump left to the right branch of,. The second inhibition,
due toc,, arrivesAtg later. If 7<<7* and the initial condi- e
tions are such that, does not rise vertically aboveK, by dt

Solving (3.1) for time, we obtain

L

t=7, In(WO , (3.2

dw 1
—(alv—bl—W), (33)
TR
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] (T

FIG. 8. The path of two cells
in the antiphase solution in the
phase plane. For the antiphase so-
lution, the time fromc,(27) to the
positionc,(0) is exactlyT,.

where the sigmoidv,.(v) is approximated by the linav D

—b;. We’re assuming that while the neuron is on the right W,(7)=w,(0)e™ F7 R+ E(l—efET/TR)- (3.7

branch ofCq, it is always below this sloping part of the

sigmoid (which we are approximating with a linelf this is At t=7, the inhibition fromc, activates, causing, to jump
not the case, and for some amount of time the neuron igown to the left branch of,. At t=27, ¢, jumps to the left
below the horizontal portion of the sigmoid, the time canpranch ofc, and then travels taK,. Using Eq.(3.2) for the

easily be calculated, since..(v)=1. _ . time on the left branch of a cubic, we obtain an expression
To eliminatev in Eq. (3.3, we also approximate the right for T, (see Fig. 8 which is

branch ofC; with a linew=—a,v +b,.

Equation(3.3) now becomes W, (7)
T2:’T|_ In - T. (38)
Wik,
dw 1 w—b,
= || | bi—wi, (3.4 : . . i iy
dt g —az If we substituteT, into Eq. (3.6), with an initial position
of wy(27), we obtain an equation for the position of after
which can be simplified to C, has reached the left knee 6f. The map is defined by
—E7 /7
dw 1 D ( D)E, wy(7)| TELIR
- - (D- Ma(Wo)=—==+|wy(27)— =|e""Rl —— .
at TR(D Ew), (3.5 A(W2) E 1(27) E Wik,
(3.9
where E=a;/a,+1 and D=a;b,/a,—b;. The constants _— . .
a,, by, a,, andb, are all positive numbers. Therefol,is Substituting Eq(3.7) into Eq. (3.9) yields
also positive. Note thdd must be positive as well. We know D D
this becauselw/dt>0 on the right branch of a cubic. This M ,(w,)= —+(w1(27)— _) .eET7R
also implies thaEw must be less thaB as long as the cell E E
is belowp,, whosew coordinate iD/E. D —Em IR
Equation (3.5) can be solved fow while on the right w,(0)e  E7R+ E(l—e*ET’TR)
branch of a cubic. We obtain %
Wik,
et D ~EY (3.10
w(t)=wge 'R+ g(l-e "R), (3.6 .

Now, we can show thaM, mapsB into itself. First,

wherew} is the initial position of the cell on the right branch considerw,(0)=w,, corresponding to an infinite time dis-
of the cubic. Using the initial conditions defined earlier, aftertance from the cell at the left knee &f. By substitutingD/E
time 7, thew value ofc, on the right branch of; is given by  into Eq. (3.10, we see that the terrw,(27)—D/E] is
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negative, sincav,(27) is always less than the critical point tion due toc, wears off. By assumptiofA2), ¢, has not yet
located aw=D/E, and every other term is positive. There- reachedLK,, and by the definition ofr, w;(2(7—6)) is
fore, w, is mapped to a point lower than itself. below LK. Thus both cells jump to the right branch @f.
Next we check that at the other end point Bf that  Fast threshold modulatiqii5] causes a compression in time
SN ; R_ L between the cells. Notice that the time 6f from LK, to
M.A(W)>W' LHerZ V\;]e u.se the alfsumptl(mfZ) thatT <~T. ' RK, is less tharTR since thew rate onc, is@faster than on
SinceT,>T" and the time it takes to~go fom, towis C,. Therefore by(A2), sinceTR< 7, the cells are abovBK,
less thariT®, this ensures that the point will be mapped to  when the self- and mutual inhibitions turn on. Note that this
a point above itself. Therefore, sinBeis mapped into itself, occurs simultaneously since both cells jumped up at the same
there exists an initial condition withiB which is mapped to time. Therefore the cells jump down together. Again because
itself. This fixed point corresponds to the antiphase solutionof fast threshold modulation, there is time compression
To show local uniqueness and stability of the antiphasecross this jump, and thus the cells synchronize. This result
solution, we show tha¥l 5 is a contraction mapping @ into  shows that the curvE, does not intersect the lindt,= 7.

itself. This can be achieved by showing thstA(wW,)[<1,  Therefore, letr be the value ofr at whichT', andT'; inter-
where ' denotes derivative with respect to,(0), for all  sect.

w,(0) e B. Taking the derivative, we find Exactly the same argument as above shows that=if
Er (D andAt,= 7+ 4, for § sufficiently small and positive, then the
M a(wo) = : (— —Wl) cells tend towards the synchronous solution. For the same set
TRWo | E of initial conditions, but for sufficiently small delays, we

implies that there exists a cundé;, which lies abovel,,
which separates the antiphase region from the synchronous
(3.11) region for initial conditions that are a relatively large dis-
tance apart.
Notice that the first term is larger than one, but the second Finally, we discuss why only the synchronous solution is
and third are less than one. However the first term is algeStable if the delay is sufficiently long. Suppose, for example
braic in the ratior, / 7 while the third term is exponential in that 7>7+T". If the cells both start neakKy, then they
this ratio. Thus forr /¢ sufficiently large, the product can jump to the active phase, evolve abavgy, and jump down,
clearly be made less than 1. Note thal 7> 1 is consistent  eventually toC, at t=r+ At,. Now since the delay is so
with assumptiongAl) and (A2). In this case, the antiphase |ong, both cells are belowv x when the first inhibition

solution is stable. wears off. Moreover, until this time, the fixed poipg pre-
vents them from jumping up to the active state. Thus the

D. The antiphase and synchronous solution for longer delays  cells jump up to the active state togethetat27. Since the
We now show how to extend the analysis to considercells jump down and up together, as before, they synchro-

delays larger tham* . Consider for a moment the case where M2€: . .
7=7* andAt,=* — 6, wheres is a small positive number. This completes the analysis needed to establish Theorem

At t=0, ¢, jumps to the right branch af,. At t=7* — 8, ¢, 1 and the bifurcation diagram shown in Fig. 6.
jumps up to the right branch af,. At t=7*, both cells fall

w,e E7R+ D/E(1—e" ET/TR)} —(Er IR +1) recall that the cells tend towards an antiphase solution. This

Wik,

back to the right branch of,. By assumption(Al), 7* IV. PARAMETER DEPENDENCE AND NUMERICAL
<Ta, thuswy(27* — 6) <Wg,. This implies that when the SIMULATIONS
inhibition due toc, turns on,c, will jump down to the silent In Fig. 9, we show the results of a simulation using model

state to the right branch &%, while c, will stay in the active  equations based on the Morris-Lecar equatidi€; see the
state on the right branch of that cubic. After another time Appendix for equations and parameter values. In the figure,
both cells jump taC;, with ¢; on the left branch and, on  we start the cells with initial conditions which lie aboVg
the right branch of that cubic. From there, the cells evolvein the bifurcation diagram. As is seen, the cells tend towards
until c; reaches.K;. This situation has already been ana-the antiphase solution. Arountd=1200, we increased the
lyzed and we know that the cells tend towards the antiphasgelay enough so that the cells synchronize. Next, ardund
solution. Thus forr=7* and Ato=7*— &, the cells do not =2700, we decreased the delay, so that the synchronous or-
synchronize. This implies that at=7*, the curvel'; lies  bit disappears and the cells become trapped in the on-state
below the curvd’,,. solution.

Next consider the casAt,=7 and 7=7— & for some We next discuss how the solutions depend on various pa-
5 positive and small. At=0, c; jumps up to the right rameters. The existence and stability results do not depend
branch ofC,. At t=7—5 by assumptiongAl) and (A2), substantlally_on the size of the coupligg,,, nor on the fact

- . - that the maximal conductances for the self- and mutual cou-
W1(7=0)>Wr,, while, on the left branch ofo,Wx(7=9) iy are the same. It is required that the inhibitions are
>W_k,- Thus both cells jump back to the left branchf strong enough to makery, <W,, <Wgk, <W, . The size of

The cells evolve dowi@; until t=2(}— 6) when the inhibi-  the inhibition will affect the basin of attraction of the solu-
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tions, though. For example, stronger inhibition increases thene right branch o€, beforec, loses the last of its inhibition
basin of attraction of the synchronous solution for a fixedgt time 2r. Sincec; was moving down towardsK ; andc,
delay by making, among other things, smaller. Similarly  \yas moving up the right branch 6§, there is time compres-
the ratesg and 7 also affect the basin of attraction of gjon |f At, and 7.— ,, are not too large, then the cells
solutions. A largerrg means a faster right-hand branch, synchronize.
which also increases the basin of attraction of the synchro- In both cases above, although the cells do not jump down
nous solution by making,, smaller. _ ___or up at exactly the same time, they do so in a small time
We next s_how that the synchronous ;(_)Iutlon_ PerSIStS 10y in4ow of one another. Thus the ideas that underlie synchro-
the face of different types of heterogeneities. First SUPPOSE;; ation through fast threshold modulation still apply to
that the self-inhibitory delay+;) is shorter than the mutual- these cases
inhibitory delay (r,,), but both are larger thasi . If the cells S ' - - h that both cell ive th
start close to one another ndak,, then the leading cell is . UPPOSEr, = 75, Tm= 7", SUCN that LOIN CElIS TeCEIVE the
the first to jump down from the active state. Thus in the time‘cIrSt inhibition betweerRK, andRKz. For TS_< m. the cells
move away from synchrony. At time;, ¢, jumps down to

before the trailing cell feels the mutual inhibitidor self- - b
inhibition from itself, the cells will be moving in opposite the right branch oC;. c, does the same at time, or 7,

directions on opposite branches. The leading cell will bet Ato, depending on which is less. Then jumps left onto
moving down the left branch af; and the trailing cell will ~ the left branch ofC; at time 7, or 75+ At,, depending on

be moving up the right branch &f. Thus thew values of the which is more. Now,c, has time to travel down the left
cells will become closer. If the trailing cell jumps down rela- branch ofC, until ¢, jumps left onto the same branch at time
tively soon thereafter, the cells will be closer in time. There-m,+ Atg. The result is time expansion. Here we are assum-
fore if the initial conditions are not too far apart and  ing that the delays are sufficiently small so that both cells
<7, IS not too large, the cells will synchronize. return to the left branch af, when the inhibition turns off. If
Alternatively, if 7,,<75, then the synchronous solution the delays are large enough so that both cells are bekoyy

will still be stable. In this case, the trailing cell will jump then the cells may still approach synchrony, as described
down before the leading cell && 7,,, and there will be a previously for delays greater thari.

time expansion until the leading cell also jumps down. The For r,<7s, ¢c; Will reach the left branch of, first, in a
trailing cell ¢, will now be below the previously leading cell manner similar to the process in the previous paragraph.

¢, on the left branch of . At some time later, both cells will travels down the left branch while, travels up the right
receive a second amount of inhibition. The time at which thisbranch ofC; until ¢, jumps left, arriving closer t@,. Again,
occurs is not important here. The cells will move to the leftthere is time compression. The above results were obtained
branch ofC, and remain in the same relative positiary,  with up to 5% of heterogeneity between and 7.

below c,. Eventually, the inhibition will turn off. For suffi- Many studies of heterogeneity examine the stability of the
ciently large delays, both cells will travel down the left synchronous or near-synchronous solution when the intrinsic
branch ofC, below LK. At time 27,,, ¢, will lose inhibi-  frequencies of the cells are different. In our case, we can
tion and jump right onto the left branch 6f, where it will  parallel this idea by varying the position of the fixed points
travel down. At timer,,+ 75, C, will lose all of its inhibition ~ on the right branches for each cell. This can be achieved by
and jump right onto the right branch 6§ (this is evident by  varying various parameters in the equations such,gsand
considering the time whea, originally jumped down from g, ; see the Appendix. If the parametégs; andg, are var-

the right branch of’). ¢, will now have time to travel up ied between cells, each neuron follows different cubic
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nullclines in the phase plane. However, synchrony can stilcomes permanently trapped in a neighborhoodpgfand
be stable in these cases if, as in the homogeneous case, bover oscillates, while the faster cell continues to rhythmi-
cells jump down at the same time. By choosing a sufficientlycally fire.
large delay, so that both cells can rise above their respective Interesting behavior can also occur without heterogeneity.
RK,’s, this can be achieved. We varied the valud gf by =~ By making , smaller than in the simulations for Fig. 9, in
up to 20% between cells and still observed stable synchrathis caser, = rr=1, synchronous cells can be made to os-
nous orbits(simulations not shown Similarly, the synchro- cillate for a finite number of times before settling into an
nous solution persisted in the presence of up to 20% heter@mn-state; see Fig. 11. By selecting an appropriate delay, we
geneity in the paramet@; between cells. Undoubtedly, the can make the cell oscillate for any desired number of times
synchronous solution would be persistent to heterogeneity ibefore moving to the on-state. This phenomenon can be ex-
other sets of parameters. plained as follows. The cells start synchronousli K. The
Varying tr between cells changes the rate at which thedelay is large enough so the cells rise ab®4€, and can
neurons travel on the right branches of the cubic nullclinejump down freely when the inhibitions turn on. We know
By increasingrg for a particular cell, it will move slower on that the cells will travel down the left branch 65 for a time
the right branch than the other cell. Consequentlyand 7* 7, during which they surpadsK, if 7 is large enough. They
will be greater for the cell with the largerz. So, again, if then jump to the right branch @f, and travel up for another
the delay is large enough so that both cells are atididg  time 7 before the inhibitions are felt again. How far they
when the second inhibition is felt, the cells will experiencetravel up the right branch depends on how low the cell trav-
time compression during left jumps. Another interesting pheeled on the left branch, which in turn depends on the delay
nomenon observed while varyingg is a so-called 2-to-1 time (which we assumed was large enough for the cells to
oscillation in which one cell oscillates twice while the other initially rise aboveRKy). Different delays correspond to dif-
cell only oscillates once; see Fig. 10. This is seen by choodferent times that the cells spend on the left and right branches
ing 7r sufficiently large for one cell, as compared to theof the cubics. If the delay isn't sufficiently large, the cells
other cell'stg. The fast cell will rise abov&®K, before the  will become trapped bp, when the jump down. If the delay
second inhibition is felt, while the slow cell will become is sufficiently large, the cells will jump left and repeat the
trapped byp,. The fast cell then proceeds to jump left, travel process. Some delays cause the cells to oscillate a few times,
down the left branch of,, and then jump right onto the right but each time the cells make a circuit, the height that the
branch ofC;. The slow cell will have been released from cells reach on the right branch 6f decreases. Eventually,
inhibition and will be on the right branch @f; too. The fast the cells do not rise aboVRK, and they become trapped in
cell then catches up to the slow cell and both cells will jumpthe on-state. This behavior is observed for an interval of
down to the left branch of, when the mutual and self inhi- these delays.
bition is felt. Now, both cells will travel down that right

branch and eventually jump to the right branchCgfwhen V. DISCUSSION
the inhibitions turn off. Again, the slow cell will not be able '
to rise aboveRK,, while the fast cell will. The process re- In this paper, we have shown that the length of the syn-

peats. Notice the fast cell has fired twice and the slow celbhptic delay is an important parameter to consider when ana-
has fired once. By making the slower cell even slower, wdyzing the dynamics of inhibitory neurons. Its size deter-
can obtainn-to-1 solutions for anyn (simulations not mines which type of solutions can be stable. An important
shown. However, if the slow cell is too slow, then it be- factor in this determination is the use of self-inhibition
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within the network. The main advantage that self-inhibitionmodel, the compression across the down jump is enhanced
provides is that it allows the cells to feel the same synaptiaue to the existence of the fixed points on the right branch of
current at all moments in time. In particular, for the approachthe cubics. This compression is large enough to overcome
to the synchronous solution, it allows cells to jump downthe effects of mild heterogeneities. The cells may not jump
from the active phase at the same time. Without self-up to the active state at the same time, but, due to the self-
inhibition in our model, the synchronous solution would beinhibition, will always jump down to the silent state at the
unstable. same time provided that the delay is sufficiently long. We

Self-inhibition has been considered in other neuronateiterate that the existence of the fixed points is not critical
modeling studies, often in the context of obtaining simplifiedfor stability of intermediate delay synchrony. The fixed
models of large networks of mutually coupled spiking neu-points simply expand the range of delays over which syn-
rons[5,17]. These studies report that the synchronous soluehrony can be achieved.
tion is stable but require the decay rate of inhibition to be The role of synaptic delays in modulating the stability of
slow. The reason that we do not require slow inhibition isthe synchronous solution for networks of coupled cortical
that self-inhibition acts differently for bursting neurons thanexcitatory cells has been considered in R&8]. They found
for spiking neurons. In our case, the self-inhibition acts inthat networks with short delays tend to synchronize whereas
the active phase and allows the cells to jump down to theéhose with long delays tend to desynchronize. Perhaps not
silent state at the same time, creating time compression besurprisingly, our results are the opposite. However, there are
tween cells across the down jump. In the spiking neuronregions of the brain where synchrony is observed between
case, the active state of the neuron is ignored and the effeeicitatory cells that are anatomically quite far apart such as
of the self-inhibition is felt when the cell is already back in with pyramidal cells in the hippocampus. Between such cells
the silent state. Thus these studies require the slow inhibitiothere are presumably very long synaptic delays. Thus it may
to synchronize the cells and do not really need self-inhibitiorbe unlikely that this synchrony results from long-range exci-
for stability of the synchronous solution. For bursting neu-tation. Our results suggest that networks of interneurons can
rons, self-inhibition also acts differently than mutual inhibi- synchronize over long distances and that the synchrony ob-
tion. Mutually coupled bursting cells without self-inhibition served in the pyramidal cell layer may be a reflection of
also require additional slow currents for synchronization besynchrony in the interneuron network. Ermentrout and Ko-
cause the cells need not jump down to the silent state at theell showed that long-range synchrony can occur if certain
same time thereby precluding the possibility of time com-networks of interneurons exhibit spike doublets, where each
pression on the down jump. Finally, we note that self-interneuron fires two spikes in a very short time followed by
inhibition in our model plays little role in the on-state solu- a longer interdoublet interval. They concluded that the syn-
tion and is not crucial for establishing the existence andchrony was induced not by the doublet, but by the fact that
stability of the antiphase solution. It does, however, detereach spike in the doublet was produced by a different source
mine where in phase space the antiphase solution lies.  of excitation; one coming from a nearby pyramidal ¢elith

The model that we presented also yields stable synchrongo delay and the other coming from a far off pyramidal cell
in the presence of heterogeneities, both in terms of synapti@with long delay. While we are not working with a model
and intrinsic parameters. This is in slight contrast to the rethat has such fine structure to capture doublets, nor are we
sults of Refs.[5,17], where heterogeneities in intrinsic pa- including excitatory cells, our paper interestingly has one
rameters together with stronger inhibition tend to desynchroparallel to the work of Ermentrout and Kopell in the follow-
nize solutions, even in the presence of self-inhibition. In ouring sense: their synchrony requires input from two sources, a
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local pyramidal cell and a distant one. Our synchrony also S

requires input from two sources, locaelf-) inhibition and €qp ~all=siH@i—vm) —BsiH(vm—vi),
distant(mutua) inhibition. Finally, we note that the previous

studies of synchrony between mutually coupled inhibitory

cells require two slow currents for stability. It remains to be ds;
seen if a minimal network can achieve stable synchrony in eqr ~1=siIH;—vem) = BsjH(vn—v))
the presence of only one synchronizing input or slow current.
and
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APPENDIX: FULL EQUATIONS AND SIMULATION

VALUES wherei #j.

The equations used in our simulations are based on the 7-(vi) was defined previously as a Heaviside function.
Morris-Lecar mode[16]. Parameters that were fixed during However, in the simulations, the Heaviside function was re-

the simulations are given below. placed with a tanh function.
do; —
Ed—tlz lext— Oilvi—Ei]—9kWi[vi — Ex] = 9caM(v)) 7(v;) = 0.5 1+ t@anh20vi v [ 7r— 7]+ 70 - (A3)

X [0i—Ecal = GsysSi(t—7)[vi— Esyal . o
be sy Y The values of the parameters used in the simulations are

—OsyrSj(t—7)[vi = Egynl lexi=50, 9,=0.5, E;=—50, gk=2, Ex=—70, gc,=1.9,
q Eca=100, €=0.01, gsyn=0.25, Egyn=—100, @=20, B
Wi N . =20, mh=1, mst=14.5,wh=12, wst=5, v,=0, 7. =2,

dt _[WOC(UI) WI]/TOC(UI)! (Al) andTR:l.
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