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Role of synaptic delay in organizing the behavior of networks of self-inhibiting neurons
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We consider a pair of mutually coupled inhibitory neurons in which each neuron is also self-inhibitory. We
show that the size of the synaptic delay determines the existence and stability of solutions. For small delays,
there is no synchronous solution, but a stable antiphase and a stable on-state solution. For long delays, only the
synchronous solution is stable. For intermediate delays, either the antiphase or synchronous solutions are
stable. In contrast to prior work, for stability of synchrony, we only require the existence of a single slow
process.
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I. INTRODUCTION

Networks of inhibitory neurons exist in various parts
the central nervous system. Efforts to determine the fu
tional role of these networks have been complicated by
complex architecture of and the diversity of synaptic int
actions within these heterogeneous networks. For this rea
studies of reduced, if somewhat idealized, models are of
portance in that they provide insight into the important n
work interactions. For example, inhibitory neurons ha
been implicated in synchronizing cells at theg frequency in
the hippocampal and neocortical systems@1#. The dynamics
of inhibitory reticularis cells determine whether the thalam
displays spindle or delta sleep rhythms@2,3#. The behavior of
interneuron networks has also been suggested to gover
phase precession phenomenon of hippocampal place
@4#.

Prior studies of mutually coupled inhibitory network
have reported that there are two necessary conditions
stability of the synchronous solution: one is a delay to
onset of inhibition, the other is the existence of an intrin
slow current that determines the length of the neuron’s
fractory state and a second slow current@5,6,2,7,8#. The re-
quired second slow current can be synaptic such a
GABA-B mediated inhibition, or can be intrinsic to the ce
such as a sag current@2#.

Self-inhibition has been suggested as a possible me
nism for organizing the behavior of taste receptor ce
@9,10#, of transient cells involved in visual processing in t
locust medulla@11# and in the cortical collecting tubule o
rats@12#. At a system level, self-inhibition can also arise a
reduction of a more complicated architecture. For exam
LG neurons are known to presynaptically inhibit excitato
input to them fromMCN1 cells in the lobster stomatogastr
ganglion @13#. Presynaptic inhibition is equivalent to sel
inhibition. See Fig. 1.

In this paper, we show that two mutually coupled, se
inhibitory neurons can produce stable synchronous osc
tions provided only that the onset of inhibition is delayed
sufficiently long and that the refractory state of the neuron
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also sufficiently long; there is no requirement on the ex
tence of a second slow current. We show that the size of
synaptic delay determines the existence and stability of
lutions. For small delays, there is no synchronous soluti
but a stable antiphase and a stable on-state solution.
larger delays, the antiphase and synchronous solutions
stable. Finally, for very large delays, only the synchrono
solution is stable.

Our paper shows how bistability can be achieved fo
robust set of parameters. The results suggest ways in w
the network can transition between various rhythmic sta
We also provide insight into neural mechanisms that mo
late characteristics of the solutions such as the basin o
traction of solutions.

The paper is organized as follows. In Sec. II, we state
modeling equations and assumptions. Here we discuss
to use geometric singular perturbation theory to analyze
model. In Sec. III, we discuss the existence and stability
solutions as a function of the synaptic delay. In Sec. IV,
show how the solutions depend on other parameters of
equations. We also discuss the robustness of the synchro
solution to synaptic and intrinsic heterogeneities. Numeri
simulations are provided. Section V is a discussion.

II. MODEL

We use biophysical conductance based equations
model the cells and the synapses between them. These e

FIG. 1. ~a! Equivalence of an excitatory-inhibitory pair with
presynaptic inhibition to a single cell with self-inhibition.~b!
Equivalence of a network of mutually coupled cells with presyna
tic inhibition to a two cell network with mutual and self-inhibition
Dots denote inhibition and bars denote excitation.
©2001 The American Physical Society08-1
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FIG. 2. The nullclines for an isolated inhibi
tory neuron without self-coupling.
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tions can be written compactly in a general form in which t
exact details of the equations are less important than
geometric shape of the nullclines of the equations. The eq
tions for an isolated inhibitory cell without self-coupling a

e
dv
dt

5 f ~v,w!,

~2.1!
dw

dt
5@w`~v !2w#/t`~v !,

where e!1 is the singular perturbation parameter. Thev
nullcline is the curveC05$(v,w): f (v,w)50% and is cubic
in shape. We letLK0[(vLK0

,wLK0
) denote the local minima

~also called the left knee! of C0 and letRK0[(vRK0
,wRK0

)

denote the local maxima~right knee! of C0. The w nullcline
is the curveS5$(v,w):w`2w50% and is a nondecreasin
sigmoid. We take

w`~v !5H 0 v,va

1 v.vb
~2.2!

for somevLK0
,va,vRK0

,vb . The functionsf andg satisfy

the following requirements:f .0 ( f ,0) below ~above! C0,
and g.0 (g,0) below ~above! S. The nonlinearityf con-
tains various ionic currents that are intrinsic to the cell. T
nonlinearity w`2w controls the opening and closing of
potassium channel associated with the cell. See the Appe
for equations.

The functiont`(v) is given by

t`~v !5H tL v,v th

tR v>v th ,
~2.3!

wherev th is a predetermined activity threshold located b
tween the knees ofC0. The time constantstL andtR of the
silent and active states are bothO(1) with respect toe. We
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assume thatS intersectsC0 on the right branch ofC0 near
RK0 at a pointp0[(vp0

,wp0
). See Fig. 2.

Cells communicate at synapses, whereby the ‘‘transm
ting’’ or presynaptic cell sends a synaptic current caus
either an increase or decrease in the voltage of the ‘‘rec
ing’’ or postsynaptic cell. The synaptic currents are mode
by adding a term to the right-hand side of thev8 equation for
each cell. There are two types of inhibition in our model: s
and mutual, both of which act with a delay of timet. The
equations for the two coupled cells with mutual and se
inhibition are fori 51,2 iÞ j .

e
dv i

dt
5 f ~v i ,wi !2gsynsi~ t2t!@v i2Esyn#

2gsynsj~ t2t!@v i2Esyn#,

dwi

dt
5@w`~v i !2wi #/t`~v i !, ~2.4!

e
dsi

dt
5a@12si #H~v i2v th!2bsiH~v th2v i !,

e
dsj

dt
5a@12sj #H~v j2v th!2bsjH~v th2v j !.

The i terms represent self-inhibition, while thej terms repre-
sent mutual inhibition.gsyn is the maximal synaptic conduc
tance.Esyn is the synaptic resting potential. Since the sy
apses are inhibitory, the reversal potential is less than
cells’ voltages,v i2Esyn.0. si andsj are the synaptic inpu
functions.H is the Heaviside function andv th is the synaptic
threshold.a is the synaptic rise andb is the synaptic decay
rate constant. We assume thata andb are bothO(1) with
respect toe. Thus the inhibition turns on and off fast like
GABA-A mediated inhibition. Therefore only the variablewi
8-2
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FIG. 3. Trajectories of an isolated inhibitor
neuron. The trajectory for the neuron withou
self-coupling consists of the solid curve connec
ing LK0 to (vR jump,wLK0

) and the solid curve
connecting (vR jump,wLK0

) to p0. The dashed
portion of the figure represents the changes ma
to the trajectory of the neuron when a hyperp
larizing current is injected when the cell is at th
point (v I hyp

,wI hyp
). Two arrows denote fast jump

which are solutions of Eq.~2.6!, and one arrow
denotes slow flows, which are solutions of E
~2.5!.
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evolves slowly in Eq.~2.4! corresponding to the single slow
process, which determines the refractory time of the cell

A. Singular solutions

We use geometric singular perturbation theory to c
struct solutions of Eq.~2.4!. This involves using the small
ness of the parametere to define reduced fast and slow equ
tions. Solutions to these equations are pieced togethe
form a so-called singular solution. For the types of equati
with which we deal, the existence and stability of the sing
lar solution is sufficient to imply existence and stability
the actual solution to Eq.~2.4! for e sufficiently small@14#.

It is instructive to first construct the singular solution for
single neuron, without self-coupling. Settinge50 in Eq.
~2.1!, we obtain the slow equations

05 f ~v,w!,
~2.5!

dw

dt
5@w`~v !2w#/t`~v !.

The fast equations are obtained by lettingj5t/e in Eq. ~2.1!
and then settinge50

dv
dj

5 f ~v,w!,

~2.6!

dw

dj
50.

Equation~2.5! defines a one-dimensional system where
cell is constrained to move on the cubicC0. Its rate of move-
ment is governed by the second equation of Eq.~2.5!. When
the cell reaches eitherLK0 or RK0, it makes a fast jump to
02190
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the opposite branch using Eq.~2.6!. In Eq. ~2.6!, w acts like
a parameter. The fast system now reduces to a o
dimensional equation

dv
dj

5 f ~v,ŵ!, ~2.7!

whereŵ is constant. Asŵ varies, the critical points of this
equation trace out the cubic nullclineC0.

The singular orbit of interest is one that leads to the n
ron becoming trapped in a so-called on-state. Supposet
50, the cell starts in the silent state atLK0 on C0. Then
under Eq.~2.6!, the cell will jump to the active state to th
right branch ofC0 instantaneously with respect to the slo
time t. The cell then travels up the right branch ofC0 under
Eq. ~2.5!. The stable fixed pointp0 will then attract the cell
causing it to become trapped at this high-voltage fixed po
We interpret this solution to represent tonic firing of spik
of a bursting neuron.

The isolated cell can be made to oscillate by adding
appropriate hyperpolarizing current. The effect of such a c
rent is to lower the cubicC0 in the phase plane; see Fig.
Thus if the cell is in a neighborhood ofp0 and negative
current is injected, the cell will jump back to the left branc
of C0. Thus for a cell to jump between active and sile
states, it must either reach the knee of a cubic, or receive
appropriately timed dose of inhibition. Notice that a cell wi
self-inhibition can oscillate if there is a sufficiently long d
lay to the onset of inhibition.

We now consider the coupled system of reduced fast
slow equations. The fast equations are obtained from
~2.4! by substitutingj5t/e and then settinge to 0.

dv i

dj
5 f ~v i ,wi !2gsynsi~2t!@v i2Esyn#

2gsynsj~2t!@v i2Esyn#,
8-3
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FIG. 4. The three cubic nullclines correspon
ing to different levels of inhibition.
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dwi

dj
50,

dsi

dj
5a@12si #H~v i2v th!2bsiH~v th2v i !, ~2.8!

dsj

dj
5a@12sj #H~v j2v th!2bsjH~v th2v j !.

The slow equations are obtained directly from Eq.~2.4! by
settinge50.

05 f ~v i ,wi !2gsynsi~ t2t!@v i2Esyn#

2gsynsj~ t2t!@v i2Esyn#,

dwi

dt
5@w`~v i !2wi #/t`~v i !, ~2.9!

05a@12si #H~v i2v th!2bsiH~v th2v i !,

05a@12sj #H~v j2v th!2bsjH~v th2v j !.

As with Eq. ~2.7!, thev i equation of Eq.~2.8! can be repre-
sented as

dv i

dj
5F~v i ,ŵ,si ,sj ! ~2.10!

for a constantŵ. Notice this equation depends on the valu
of si and sj . As a result, there are two new cubics to co
sider. They are C15$(v,w,si ,sj ):F(v,w,1,0)
50 orF(v,w,0,1)50% and C25$(v,w,si ,sj ):F(v,w,1,1)
50%. The cubicC1 corresponds to the lowered cubic whic
results from either the self- or mutual inhibition andC2 rep-
resents the lowered cubic that results from both of these
hibitions. The amount that these cubics are lowered is dep
dent mostly on the strength of the inhibition and is govern
02190
s
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d

by gsyn. We shall refer to the left and right knees of the
cubics byLKi andRKi , for i 51,2. The intersection of the
right branches of the lowered cubics with the sigmoidS de-
fines two new fixed pointsp1 and p2. We assume thatwp2

,wRK2
,wp1

,wRK1
,wp0

. We also assume thatS intersects

C2 along its left branch at a pointp3; see Fig. 4. Also, since
w`50 near the left branches of these cubics, the rate ow
evolution on the left branches is independent of which cu
a cell may lie on. This is not the case for the right branch

B. Main result

We shall establish the existence and stability of three
ferent types of solutions. The first is the on-state soluti
where both cells are trapped at a high-voltage fixed po
The second is a synchronous periodic orbit. The third is
antiphase solution in which when one cell jumps to the
tive phase, the other cell jumps down to the silent phase a
a delay oft. We shall always work in thee50 singular limit
since results of Ref.@14# imply that the singular solutions o
interest perturb to yield actual solutions for the fulle small
problem.

Our goal is to study this problem with all parameters fix
and to see how the existence and stability of solutions
pends on the delayt. To this end, we will show that for a
fixed t, at most two of the above-mentioned solutions can
stable. We will provide conditions on the basin of attracti
of each of these solutions. Depending on the value of
parameters, the model that we consider can display inc
ibly complicated and diverse dynamical behavior. Thus
give a precise statement of the results, we shall make a
assumptions. Later, we will show how some of the resu
are affected by changing assumptions.

Let t* be the time it takes a cell to travel on the rig
branch ofC0 from wLK0

to wRK2
, andTl be the time on the

left branch ofC0 between these two points; see Fig. 5. Lett*
be the time on the right branch ofC0 from wLK0

to wRK1
. Let

TR be the time it takes a cell to travel on the right branch
8-4
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FIG. 5. Time lengths of evolu-
tion between relevant points o
various cubic nullclines. For clar-
ity, the times have been projecte
~to the right and left! onto simpli-
fied versions of the branches o
the nullclines.
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C1 from wLK1
to wRK2

, Ta the time on the right branch ofC1

from wLK0
to wRK2

, t̂ be the time it takes to travel on the le

branch ofC0 from wp0
to wLK0

, andTL be the time it takes to

travel on the left branch ofC1 from wLK0
to wLK1

. We make
the following two assumptions:

~A1!t* ,Ta,Tl ~A2!TR, t̂,TL.

The crux of these assumptions is that evolution in the si
state of the neuron is slower than in the active state. To s
the main theorem, we shall restrict the set of initial con
tions to the interval@0,t̂ #. This is sufficient since a given ce
must jump down from the active state with aw value that is
less thanwp0

.

Theorem 1

If Dt0P@0,t̂ #, then there existst̄P(t* ,t̂) such that
02190
t
te
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~i! if t,t* , there exists both a stable on-state and
stable antiphase solution.

~ii ! if t* <t, t̄, there exists both a stable synchrono
and a stable antiphase solution.

~iii ! if t̄,t, then there exists only a stable synchrono
orbit.

Each of the stable solutions has a corresponding basi
attraction, which we shall identify in the analysis below; F
6 shows the bifurcation diagram.

III. EXISTENCE AND STABILITY OF SOLUTIONS

Establishing existence and stability of the on-state a
synchronous solution is straight forward. Doing the same
the antiphase solution is a bit more involved. For the on-s
and synchronous solution, we prove stability by direc
showing that cells that start nearby to either of these so
tions approach them as time evolves. For the antiphase s
-
f

y.

.

e
l
-
.

FIG. 6. The bifurcation dia-
gram relating the delay to the ba
sin of attraction of each type o
solution. At most two solutions
can be stable for the same dela
The curvesG i , i 50, . . . ,3 sepa-
rate different solution regimes
The diagonal G2 consists of a
solid and a dashed portion. Th
dashed portion separates initia
conditions that approach the an
tiphase solution in different ways
8-5
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FIG. 7. The path of two cells
in the phase plane as they ap
proach synchrony, for intermedi
ate delays. The notationci(t) de-
notes the position of celli at time
t. Dt0 denotes the initial time dis-
tance between cells att50.
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tion, stability is established by showing that the solution
obtained as a fixed point of a relevant contraction mappi

A. The on-state solution for short delays

We first discuss the existence of the on-state solut
Suppose both neurons start atLK0 andt,t* . At t50, both
cells jump to the active state. Due to the delay, the inhibit
will not be felt for t time, so both cells jump to the righ
branch ofC0 and travel up. After timet, both the self- and
mutual inhibition turn on. Sincet,t* , w1(t)5w2(t)
,wRK2

and are thus not above the right knee ofC2 when the

inhibition is felt. As a result, both will jump to the righ
branch ofC2 and become trapped atp2.

To prove the stability, we start with the cells a fixed d
tance apart such thatDt0,t. At t50, c1 jumps to the right
branch ofC0. Sincet,t* , w1(t),wRK2

. SinceDt0,t, c2

reachesLK0 and jumps before the inhibition due toc1 turns
on. When the inhibition due toc1 activates, both cells jump
back to the right branch ofC1. The inhibition due toc2 will
come after anotherDt0 time. If w1(t1Dt0),wRK2

, then

both cells will become trapped byp2. If w1(t1Dt0)
.wRK2

and w2(t1Dt0),wRK2
, the cells will approach an

antiphase solution; and ifw2(t1Dt0).wRK2
the cells will

approach a synchronous solution. Both of these solutions
discussed below. The curved labeledG0 in Fig. 6 represents
the case whenw1(t1Dt0)5wRK2

. This curve is one bound

ary between the antiphase and on-state solution regions.
curveG1 represents the case whenw2(t1Dt0)5wRK2

. This

curve is one boundary between the antiphase and sync
nous solution regions.
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B. The synchronous solution for intermediate delays

We continue by discussing the existence of the synch
nous solution. Suppose both cells start atLK0 jump to the
right branch ofC0. There, they travel up that branch un
inhibition turns on, after timet. For the synchronous solu
tion to exist, it is necessary fort>t* . In other words, both
cells need to travel up the the right branch ofC0 aboveRK2

before the self- and mutual inhibition is felt. Att5t, the
cells can then jump to the left branch ofC2. At t52t, the
cells return to the left branch ofC0 and the process repeats

Next, we discuss the stability of the synchronous soluti
Suppose first thatt,t* . We startc1 at LK0 andc2 at some
time distanceDt0, abovec1 on the left branch ofC0 such that
Dt0,t. At t50, c1 jumps to the right branch ofC0. After
time Dt0 , c2 will jump to the right branch ofC0.

Now both cells travel up the right branch ofC0. As they
get closer top0, the neurons move closer together in Eucli
ean distance. Note, however, the cells remain the sametime
distance apart. This is because both cells adhere to the s
differential equations and have followed the same trajecto

After time t, the inhibition due toc1 crossing the synaptic
threshold, will turn on. Sincet,t* , both cells jump left to
the right branch ofC1. For the nextDt0 time, both cells
travel towardp1 as Euclidean compression continues to o
cur. When the second inhibition turns on, sincet.t* , if
Dt0 is sufficiently small, then both cells jump to the le
branch ofC2, see Fig. 7. It is of fundamental importance th
the cells jump down to the silent state at the same time
cause this causes a compression in time between cells d
fast threshold modulation@15#. This occurs because the ve
tical speed on the right branch ofC1 at the jump down point
is less than the vertical speed at the jump on point on the
branch ofC2. Since the cells remain the same Euclidean d
8-6
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ROLE OF SYNAPTIC DELAY IN ORGANIZING THE . . . PHYSICAL REVIEW E 63 021908
tance apart before and after the jump, but the speed incre
after the jump, the time distance between the cells must
crease. Let the new time distance be denoted byDt1,Dt0.
Note that after the jump,c2 is now the leading cell, being
below c1 on the left branch ofC2.

Both cells now travel down the left branch ofC2 . t time
after the cells have jumped down, inhibition turns off f
both cells, since they jumped down simultaneously. Sinct
,t* , by assumption~A1!, the cells then return to the lef
branch ofC0 aboveLK0.

There is no time compression expansion as the cells ju
between the left branches ofC2 andC0 since the rate on the
left branches is independent of cubic. Thus whenc2 reaches
LK0, the time between cells isDt1, which is less than the
original time apart. Thus the cells approach synchrony.

The rate at which they synchronize is most strongly g
erned by the amount of time compression across the d
jump. This amount is controlled by the relative speeds
each branch and the total amount of Euclidean compres
the cells undergo in a neighborhood of the fixed pointsp0
andp1. We note that the existence of the fixed points is n
necessary for the stability of the intermediate delay synch
nous solution. There would still be Euclidean compress
without the fixed points, but it would not be as strong. Th
the fixed points increase the rate at which the cells sync
nize. Later we show that they are important for the lo
delay synchrony.

In Sec. III D, we will discuss the existence and stability
the synchronous solution fort.t* .

C. The antiphase solution for short and intermediate delays

We next show that a stable antiphase solution exists.
define an antiphase solution as being an oscillation in wh
when one cell becomes active, the other cell becomes i
tive after a delay oft.

As usual, letc1 start atLK0 andc2 start on the left branch
of C0, such that they areDt0 apart in time. There are two
ways that the cells will approach an antiphase solution:

~1! If t,Dt0, then c2 does not reachLK0 before the
inhibition due toc1 is felt and will jump back to the left
branch ofC1 at t5t. By assumption~A2!, c1 rises above
RK2 before c2 reachesLK1. Assume thatt,t* so that
w1(t),wRK1

. So when the first inhibition is felt,c1 will

jump left onto the right branch ofC1, aboveRK2 but below
RK1 and become trapped byp1. In the meantime,c2 travels
down the left branch ofC1 until it reachesLK1, and jumps to
the right branch ofC1. After time t, the inhibition due toc2
causesc1 to jump down to the left branch ofC2 and c2 to
jump back to the right branch of this cubic. After anoth
time t by assumption~A1!, c1 jumps to the left branch ofC1
andc2 jumps to the right branch of this cubic. The curveG2
in Fig. 6 is the diagonalDt05t. Therefore initial conditions
that fall into this case lie above the curveG2.

~2! If t.Dt0, thenc2 is able to reachLK0 and jump right,
before the inhibition due toc1 is felt. At t5t, both cells
jump left to the right branch ofC1. The second inhibition,
due toc2, arrivesDt0 later. If t,t* and the initial condi-
tions are such thatc2 does not rise vertically aboveRK2 by
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the onset of the next inhibition, the overlapping inhibitio
will causec1 to jump onto the left branch ofC2, andc2 will
jump onto the right branch ofC2. From there,c2 will travel
up towardsp2, while c1 will travel down towardsLK2. After
time t, c1’s inhibition turns off, and by assumption~A1!, c1
jumps onto the left branch ofC1 andc2 jumps onto the right
branch ofC1. Now, c1 travels down until it reachesLK1 and
c2 travels up towardsp1. This case corresponds to the regio
of Fig. 6, which is bounded by the curvesG0 , G1, andG2.

In both scenarios above, the cells eventually evolve to
following configuration. One cell is atLK1 ~without loss of
generality, call this cellc1). Another cell is located on the
right branch ofC1 ~without loss of generality call this cel
c2). We now take this to be the setup att50.

Let B be a set of initialw positions ofc2 on the right
branch ofC1, defined as follows. The setB will include all
points fromwp1

down to the point that ist time belowRK2.

Let thew-value of this point be denoted byw̃. Therefore, the
setB5(w̃,wp1

).

At t50, c1 jumps to the right branch ofC1 andc2 moves
up that branch towardsp1. After t time, inhibition due toc1
turns on. Sincet,t* andTa,TR, by assumption~A1!, c1
has not risen aboveRK2, and so it jumps to the right branc
of C2 . c2 jumps to the left branch ofC2 because after timet,
it has definitely risen aboveRK2 and is able to jump left.
After another timet, the inhibition due toc2 turns off, since
it crossed the synaptic threshold while jumping to the le
By Eq. ~A1!, c1 now jumps to the right branch ofC1 while c2
jumps to the left branch ofC1. Let T2 be the time it takes to
move fromc2’s current position down toLK1; see Fig. 8.

To prove existence of the antiphase solution, we sh
that there exists a mapping of the setB into itself. Whenever
a cell reachesLK1, the map will record the position of the
other cell on the right branch ofC1.

When a cell is on the left branch of any cubic,w`(v)
50. Therefore, the rate ofw evolution is governed by

dw

dt
52

w

tL
. ~3.1!

Solving ~3.1! for time, we obtain

t5tL lnS w0
L

w D , ~3.2!

which is the time it takes to travel from some initial heig
w0

L on the left branch of a cubic down to a height ofw.
On the right branch of a cubic, the situation is more de

cate. It is possible that a cell is below the part of the sigm
that is not constant with respect tov, i.e. the sloping part of
the sigmoid. In this case, we must consider the fullw differ-
ential equation, or at least a good approximation of it.

For vP(va ,vb), let

dw

dt
5

1

tR
~a1v2b12w!, ~3.3!
8-7
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FIG. 8. The path of two cells
in the antiphase solution in the
phase plane. For the antiphase s
lution, the time fromc1(2t) to the
positionc2(0) is exactlyT2.
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where the sigmoidw`(v) is approximated by the linea1v
2b1. We’re assuming that while the neuron is on the rig
branch of C1, it is always below this sloping part of th
sigmoid ~which we are approximating with a line!. If this is
not the case, and for some amount of time the neuro
below the horizontal portion of the sigmoid, the time c
easily be calculated, sincew`(v)51.

To eliminatev in Eq. ~3.3!, we also approximate the righ
branch ofC1 with a line w52a2v1b2.

Equation~3.3! now becomes

dw

dt
5

1

tR
Fa1S w2b2

2a2
D2b12wG , ~3.4!

which can be simplified to

dw

dt
5

1

tR
~D2Ew!, ~3.5!

where E5a1 /a211 and D5a1b2 /a22b1. The constants
a1 , b1 , a2, andb2 are all positive numbers. Therefore,E is
also positive. Note thatD must be positive as well. We know
this becausedw/dt.0 on the right branch of a cubic. Thi
also implies thatEw must be less thanD as long as the cel
is belowp1, whosew coordinate isD/E.

Equation ~3.5! can be solved forw while on the right
branch of a cubic. We obtain

w~ t !5w0
Re2Et/tR1

D

E
~12e2Et/tR!, ~3.6!

wherew0
R is the initial position of the cell on the right branc

of the cubic. Using the initial conditions defined earlier, af
time t, thew value ofc2 on the right branch ofC1 is given by
02190
t

is

r

w2~t!5w2~0!e2Et/tR1
D

E
~12e2Et/tR!. ~3.7!

At t5t, the inhibition fromc1 activates, causingc2 to jump
down to the left branch ofC2. At t52t, c2 jumps to the left
branch ofC1 and then travels toLK1. Using Eq.~3.2! for the
time on the left branch of a cubic, we obtain an express
for T2 ~see Fig. 8! which is

T25tL lnS w2~t!

wLK1
D 2t. ~3.8!

If we substituteT2 into Eq. ~3.6!, with an initial position
of w1(2t), we obtain an equation for the position ofc1 after
c2 has reached the left knee ofC1. The map is defined by

MA~w2!5
D

E
1S w1~2t!2

D

E DeEt/tRS w2~t!

wLK1
D 2EtL /tR

.

~3.9!

Substituting Eq.~3.7! into Eq. ~3.9! yields

MA~w2!5
D

E
1S w1~2t!2

D

E D •eEt/tR

3S w2~0!e2Et/tR1
D

E
~12e2Et/tR!

wLK1

D 2EtL /tR

.

~3.10!

Now, we can show thatMA maps B into itself. First,
considerw2(0)5wp1

corresponding to an infinite time dis

tance from the cell at the left knee ofC1. By substitutingD/E
into Eq. ~3.10!, we see that the term@w1(2t)2D/E# is
8-8
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negative, sincew1(2t) is always less than the critical poin
located atw5D/E, and every other term is positive. Ther
fore, wp1

is mapped to a point lower than itself.
Next we check that at the other end point ofB, that

MA(w̃).w̃. Here we use the assumption~A2! that TR,TL.
SinceT2.TL and the time it takes to go fromwLK1

to w̃ is

less thanTR, this ensures that the pointw̃ will be mapped to
a point above itself. Therefore, sinceB is mapped into itself,
there exists an initial condition withinB which is mapped to
itself. This fixed point corresponds to the antiphase solut

To show local uniqueness and stability of the antiph
solution, we show thatMA is a contraction mapping ofB into
itself. This can be achieved by showing thatuMA8 (w2)u,1,
where 8 denotes derivative with respect tow2(0), for all
w2(0)PB. Taking the derivative, we find

MA8 ~w2!5
EtL

tRw0
S D

E
2w1D

3Fw2e2Et/tR1D/E~12e2Et/tR!

wLK1
G2(EtL /tR11)

.

~3.11!

Notice that the first term is larger than one, but the sec
and third are less than one. However the first term is a
braic in the ratiotL /tR while the third term is exponential in
this ratio. Thus fortL /tR sufficiently large, the product ca
clearly be made less than 1. Note thattL /tR.1 is consistent
with assumptions~A1! and ~A2!. In this case, the antiphas
solution is stable.

D. The antiphase and synchronous solution for longer delays

We now show how to extend the analysis to consi
delays larger thant* . Consider for a moment the case whe
t5t* andDt05t* 2d, whered is a small positive number
At t50, c1 jumps to the right branch ofC0. At t5t* 2d, c2
jumps up to the right branch ofC0. At t5t* , both cells fall
back to the right branch ofC1. By assumption~A1!, t*
,Ta , thusw2(2t* 2d),wRK2

. This implies that when the

inhibition due toc2 turns on,c1 will jump down to the silent
state to the right branch ofC2, while c2 will stay in the active
state on the right branch of that cubic. After another timet,
both cells jump toC1, with c1 on the left branch andc2 on
the right branch of that cubic. From there, the cells evo
until c1 reachesLK1. This situation has already been an
lyzed and we know that the cells tend towards the antiph
solution. Thus fort5t* and Dt05t* 2d, the cells do not
synchronize. This implies that att5t* , the curveG1 lies
below the curveG2.

Next consider the caseDt05 t̂ and t5 t̂2d for some
d positive and small. Att50, c1 jumps up to the right
branch ofC0. At t5 t̂2d, by assumptions~A1! and ~A2!,
w1( t̂2d).wRK1

, while, on the left branch ofC0 ,w2( t̂2d)

.wLK0
. Thus both cells jump back to the left branch ofC1.

The cells evolve downC1 until t52(t̂2d) when the inhibi-
02190
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tion due toc1 wears off. By assumption~A2!, c2 has not yet
reachedLK1, and by the definition oft̂, w1„2(t̂2d)… is
below LK0. Thus both cells jump to the right branch ofC0.
Fast threshold modulation@15# causes a compression in tim
between the cells. Notice that the time onC0 from LK1 to
RK2 is less thanTR since thew rate onC0 is faster than on
C1. Therefore by~A2!, sinceTR, t̂, the cells are aboveRK2
when the self- and mutual inhibitions turn on. Note that th
occurs simultaneously since both cells jumped up at the s
time. Therefore the cells jump down together. Again beca
of fast threshold modulation, there is time compress
across this jump, and thus the cells synchronize. This re
shows that the curveG2 does not intersect the lineDt05 t̂.
Therefore, lett̄ be the value oft at whichG2 andG1 inter-
sect.

Exactly the same argument as above shows that ift5 t̄

andDt05 t̄1d, for d sufficiently small and positive, then th
cells tend towards the synchronous solution. For the same
of initial conditions, but for sufficiently small delays, w
recall that the cells tend towards an antiphase solution. T
implies that there exists a curveG3, which lies aboveG2,
which separates the antiphase region from the synchron
region for initial conditions that are a relatively large di
tance apart.

Finally, we discuss why only the synchronous solution
stable if the delay is sufficiently long. Suppose, for exam
that t. t̂1TL. If the cells both start nearLK0, then they
jump to the active phase, evolve abovewRK1

and jump down,

eventually toC2 at t5t1Dt0. Now since the delay is so
long, both cells are belowwLK1

when the first inhibition

wears off. Moreover, until this time, the fixed pointp3 pre-
vents them from jumping up to the active state. Thus
cells jump up to the active state together att52t. Since the
cells jump down and up together, as before, they synch
nize.

This completes the analysis needed to establish Theo
1 and the bifurcation diagram shown in Fig. 6.

IV. PARAMETER DEPENDENCE AND NUMERICAL
SIMULATIONS

In Fig. 9, we show the results of a simulation using mod
equations based on the Morris-Lecar equations@16#; see the
Appendix for equations and parameter values. In the figu
we start the cells with initial conditions which lie aboveG2
in the bifurcation diagram. As is seen, the cells tend towa
the antiphase solution. Aroundt51200, we increased the
delay enough so that the cells synchronize. Next, arount
52700, we decreased the delay, so that the synchronou
bit disappears and the cells become trapped in the on-s
solution.

We next discuss how the solutions depend on various
rameters. The existence and stability results do not dep
substantially on the size of the couplinggsyn, nor on the fact
that the maximal conductances for the self- and mutual c
pling are the same. It is required that the inhibitions a
strong enough to makewRK2

,wp1
,wRK1

,wp0
. The size of

the inhibition will affect the basin of attraction of the solu
8-9
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FIG. 9. The effect of changing the synapt
delay. We started the cells in the antiphase
gime with t540. At t51200, the delay was in-
creased tot5150 and the solution changed from
antiphase to synchronous. Att52700, the delay
was decreased tot510 and the solution change
from synchronous to the on-state.
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tions, though. For example, stronger inhibition increases
basin of attraction of the synchronous solution for a fix
delay by making, among other things,t* smaller. Similarly
the ratestR and tL also affect the basin of attraction o
solutions. A largertR means a faster right-hand branc
which also increases the basin of attraction of the synch
nous solution by makingt* smaller.

We next show that the synchronous solution persists
the face of different types of heterogeneities. First supp
that the self-inhibitory delay (ts) is shorter than the mutual
inhibitory delay (tm), but both are larger thant* . If the cells
start close to one another nearLK0, then the leading cell is
the first to jump down from the active state. Thus in the tim
before the trailing cell feels the mutual inhibition~or self-
inhibition from itself!, the cells will be moving in opposite
directions on opposite branches. The leading cell will
moving down the left branch ofC1 and the trailing cell will
be moving up the right branch ofC0. Thus thew values of the
cells will become closer. If the trailing cell jumps down rel
tively soon thereafter, the cells will be closer in time. The
fore if the initial conditions are not too far apart andts
,tm is not too large, the cells will synchronize.

Alternatively, if tm,ts , then the synchronous solutio
will still be stable. In this case, the trailing cell will jum
down before the leading cell att5tm , and there will be a
time expansion until the leading cell also jumps down. T
trailing cell c2 will now be below the previously leading ce
c1 on the left branch ofC1. At some time later, both cells wil
receive a second amount of inhibition. The time at which t
occurs is not important here. The cells will move to the l
branch ofC2 and remain in the same relative position,c2
below c1. Eventually, the inhibition will turn off. For suffi-
ciently large delays, both cells will travel down the le
branch ofC2 below LK0. At time 2tm , c1 will lose inhibi-
tion and jump right onto the left branch ofC1, where it will
travel down. At timetm1ts , c2 will lose all of its inhibition
and jump right onto the right branch ofC0 ~this is evident by
considering the time whenc2 originally jumped down from
the right branch ofC0). c2 will now have time to travel up
02190
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s
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the right branch ofC0 beforec1 loses the last of its inhibition
at time 2ts . Sincec1 was moving down towardsLK1 andc2

was moving up the right branch ofC0, there is time compres
sion. If Dt0 and ts2tm are not too large, then the cell
synchronize.

In both cases above, although the cells do not jump do
or up at exactly the same time, they do so in a small ti
window of one another. Thus the ideas that underlie synch
nization through fast threshold modulation still apply
these cases.

Supposet* ,ts ,tm,t* , such that both cells receive th
first inhibition betweenRK1 andRK2. For ts,tm , the cells
move away from synchrony. At timets , c1 jumps down to
the right branch ofC1 . c2 does the same at timetm or ts

1Dt0, depending on which is less. Thenc2 jumps left onto
the left branch ofC2 at time tm or ts1Dt0, depending on
which is more. Now,c2 has time to travel down the lef
branch ofC2 until c1 jumps left onto the same branch at tim
tm1Dt0. The result is time expansion. Here we are assu
ing that the delays are sufficiently small so that both ce
return to the left branch ofC0 when the inhibition turns off. If
the delays are large enough so that both cells are belowLK0,
then the cells may still approach synchrony, as descri
previously for delays greater thant* .

For tm,ts , c1 will reach the left branch ofC2 first, in a
manner similar to the process in the previous paragraphc1
travels down the left branch whilec2 travels up the right
branch ofC1 until c2 jumps left, arriving closer toc1. Again,
there is time compression. The above results were obta
with up to 5% of heterogeneity betweents andtm .

Many studies of heterogeneity examine the stability of
synchronous or near-synchronous solution when the intrin
frequencies of the cells are different. In our case, we
parallel this idea by varying the position of the fixed poin
on the right branches for each cell. This can be achieved
varying various parameters in the equations such asI ext and
gL ; see the Appendix. If the parametersI ext andgL are var-
ied between cells, each neuron follows different cub
8-10
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FIG. 10. A 2-to-1 oscillation. Initial condi-
tions and parameter values are the same as in
9 except thatt5100, and for the slower celltR

53.
st
, b
tl
ti

hr

er
e
y

th
ne

ce
he

er
o

he

e
e
t
m

p
-
t

e
-
ce
w

-

i-

ity.
n
s-
n
we
es
ex-

w

r
y

av-
lay
to

-
hes

lls

e
mes,
the
,
n
of

yn-
na-
r-
nt
n

nullclines in the phase plane. However, synchrony can
be stable in these cases if, as in the homogeneous case
cells jump down at the same time. By choosing a sufficien
large delay, so that both cells can rise above their respec
RK2’s, this can be achieved. We varied the value ofI ext by
up to 20% between cells and still observed stable sync
nous orbits~simulations not shown!. Similarly, the synchro-
nous solution persisted in the presence of up to 20% het
geneity in the parametergL between cells. Undoubtedly, th
synchronous solution would be persistent to heterogeneit
other sets of parameters.

Varying tR between cells changes the rate at which
neurons travel on the right branches of the cubic nullcli
By increasingtR for a particular cell, it will move slower on
the right branch than the other cell. Consequently,t* andt*
will be greater for the cell with the largertR . So, again, if
the delay is large enough so that both cells are aboveRK2
when the second inhibition is felt, the cells will experien
time compression during left jumps. Another interesting p
nomenon observed while varyingtR is a so-called 2-to-1
oscillation in which one cell oscillates twice while the oth
cell only oscillates once; see Fig. 10. This is seen by cho
ing tR sufficiently large for one cell, as compared to t
other cell’stR . The fast cell will rise aboveRK2 before the
second inhibition is felt, while the slow cell will becom
trapped byp2. The fast cell then proceeds to jump left, trav
down the left branch ofC2, and then jump right onto the righ
branch ofC1. The slow cell will have been released fro
inhibition and will be on the right branch ofC1 too. The fast
cell then catches up to the slow cell and both cells will jum
down to the left branch ofC2 when the mutual and self inhi
bition is felt. Now, both cells will travel down that righ
branch and eventually jump to the right branch ofC0 when
the inhibitions turn off. Again, the slow cell will not be abl
to rise aboveRK2, while the fast cell will. The process re
peats. Notice the fast cell has fired twice and the slow
has fired once. By making the slower cell even slower,
can obtain n-to-1 solutions for anyn ~simulations not
shown!. However, if the slow cell is too slow, then it be
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comes permanently trapped in a neighborhood ofp2 and
never oscillates, while the faster cell continues to rhythm
cally fire.

Interesting behavior can also occur without heterogene
By makingtL smaller than in the simulations for Fig. 9, i
this casetL5tR51, synchronous cells can be made to o
cillate for a finite number of times before settling into a
on-state; see Fig. 11. By selecting an appropriate delay,
can make the cell oscillate for any desired number of tim
before moving to the on-state. This phenomenon can be
plained as follows. The cells start synchronously atLK0. The
delay is large enough so the cells rise aboveRK2 and can
jump down freely when the inhibitions turn on. We kno
that the cells will travel down the left branch ofC2 for a time
t, during which they surpassLK0 if t is large enough. They
then jump to the right branch ofC0 and travel up for anothe
time t before the inhibitions are felt again. How far the
travel up the right branch depends on how low the cell tr
eled on the left branch, which in turn depends on the de
time ~which we assumed was large enough for the cells
initially rise aboveRK2). Different delays correspond to dif
ferent times that the cells spend on the left and right branc
of the cubics. If the delay isn’t sufficiently large, the ce
will become trapped byp2 when the jump down. If the delay
is sufficiently large, the cells will jump left and repeat th
process. Some delays cause the cells to oscillate a few ti
but each time the cells make a circuit, the height that
cells reach on the right branch ofC0 decreases. Eventually
the cells do not rise aboveRK2 and they become trapped i
the on-state. This behavior is observed for an interval
these delays.

V. DISCUSSION

In this paper, we have shown that the length of the s
aptic delay is an important parameter to consider when a
lyzing the dynamics of inhibitory neurons. Its size dete
mines which type of solutions can be stable. An importa
factor in this determination is the use of self-inhibitio
8-11
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FIG. 11. Synchronous, transient oscillation
before the cells settle into an on-state. Parame
values are the same as in Fig. 9 except thatgsyn

50.15, tL51, andt5117.25. For suitably cho-
sen values of the delay, the cells can be made
oscillate any finite number of times before mo
ing to the on-state.
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within the network. The main advantage that self-inhibiti
provides is that it allows the cells to feel the same syna
current at all moments in time. In particular, for the approa
to the synchronous solution, it allows cells to jump dow
from the active phase at the same time. Without s
inhibition in our model, the synchronous solution would
unstable.

Self-inhibition has been considered in other neuro
modeling studies, often in the context of obtaining simplifi
models of large networks of mutually coupled spiking ne
rons @5,17#. These studies report that the synchronous so
tion is stable but require the decay rate of inhibition to
slow. The reason that we do not require slow inhibition
that self-inhibition acts differently for bursting neurons th
for spiking neurons. In our case, the self-inhibition acts
the active phase and allows the cells to jump down to
silent state at the same time, creating time compression
tween cells across the down jump. In the spiking neu
case, the active state of the neuron is ignored and the e
of the self-inhibition is felt when the cell is already back
the silent state. Thus these studies require the slow inhibi
to synchronize the cells and do not really need self-inhibit
for stability of the synchronous solution. For bursting ne
rons, self-inhibition also acts differently than mutual inhib
tion. Mutually coupled bursting cells without self-inhibitio
also require additional slow currents for synchronization
cause the cells need not jump down to the silent state a
same time thereby precluding the possibility of time co
pression on the down jump. Finally, we note that se
inhibition in our model plays little role in the on-state sol
tion and is not crucial for establishing the existence a
stability of the antiphase solution. It does, however, de
mine where in phase space the antiphase solution lies.

The model that we presented also yields stable synchr
in the presence of heterogeneities, both in terms of syna
and intrinsic parameters. This is in slight contrast to the
sults of Refs.@5,17#, where heterogeneities in intrinsic pa
rameters together with stronger inhibition tend to desynch
nize solutions, even in the presence of self-inhibition. In o
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model, the compression across the down jump is enhan
due to the existence of the fixed points on the right branch
the cubics. This compression is large enough to overco
the effects of mild heterogeneities. The cells may not ju
up to the active state at the same time, but, due to the s
inhibition, will always jump down to the silent state at th
same time provided that the delay is sufficiently long. W
reiterate that the existence of the fixed points is not criti
for stability of intermediate delay synchrony. The fixe
points simply expand the range of delays over which s
chrony can be achieved.

The role of synaptic delays in modulating the stability
the synchronous solution for networks of coupled corti
excitatory cells has been considered in Ref.@18#. They found
that networks with short delays tend to synchronize wher
those with long delays tend to desynchronize. Perhaps
surprisingly, our results are the opposite. However, there
regions of the brain where synchrony is observed betw
excitatory cells that are anatomically quite far apart such
with pyramidal cells in the hippocampus. Between such c
there are presumably very long synaptic delays. Thus it m
be unlikely that this synchrony results from long-range ex
tation. Our results suggest that networks of interneurons
synchronize over long distances and that the synchrony
served in the pyramidal cell layer may be a reflection
synchrony in the interneuron network. Ermentrout and K
pell showed that long-range synchrony can occur if cert
networks of interneurons exhibit spike doublets, where e
interneuron fires two spikes in a very short time followed
a longer interdoublet interval. They concluded that the s
chrony was induced not by the doublet, but by the fact t
each spike in the doublet was produced by a different sou
of excitation; one coming from a nearby pyramidal cell~with
no delay! and the other coming from a far off pyramidal ce
~with long delay!. While we are not working with a mode
that has such fine structure to capture doublets, nor are
including excitatory cells, our paper interestingly has o
parallel to the work of Ermentrout and Kopell in the follow
ing sense: their synchrony requires input from two source
8-12
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ROLE OF SYNAPTIC DELAY IN ORGANIZING THE . . . PHYSICAL REVIEW E 63 021908
local pyramidal cell and a distant one. Our synchrony a
requires input from two sources, local~self-! inhibition and
distant~mutual! inhibition. Finally, we note that the previou
studies of synchrony between mutually coupled inhibito
cells require two slow currents for stability. It remains to
seen if a minimal network can achieve stable synchrony
the presence of only one synchronizing input or slow curre
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APPENDIX: FULL EQUATIONS AND SIMULATION
VALUES

The equations used in our simulations are based on
Morris-Lecar model@16#. Parameters that were fixed durin
the simulations are given below.

e
dv i

dt
5I ext2gl@v i2El #2gKwi@v i2EK#2gCam`~v i !

3@v i2ECa#2gsynsi~ t2t!@v i2Esyn#

2gsynsj~ t2t!@v i2Esyn#

dwi

dt
5@w`~v i !2wi #/t`~v i !, ~A1!
A.

ci.

pu

ut
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dsi

dt
5a@12si #H~v i2v th!2bsiH~v th2v i !,

e
dsj

dt
5a@12sj #H~v j2v th!2bsjH~v th2v j !

and

m`~v i !50.5F11tanhS v i2mh

mst D G ,
w`~v i !50.5F11tanhS v i2wh

wst D G , ~A2!

whereiÞ j .
t`(v i) was defined previously as a Heaviside functio

However, in the simulations, the Heaviside function was
placed with a tanh function.

t`~v i !50.5@11tanh~20@v i2v th# !#@tR2tL#1tL .
~A3!

The values of the parameters used in the simulations
I ext550, gl50.5, El5250, gK52, EK5270, gCa51.9,
ECa5100, e50.01, gsyn50.25, Esyn52100, a520, b
520, mh51, mst514.5, wh512, wst55, v th50, tL52,
andtR51.
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